当前位置: 光伏网 » 太阳能资讯 » 光伏动态 » 正文

npj:有机太阳能电池供体-受体材料:快速筛选配对的 “红娘”

日期:2020-10-27    来源:腾讯网

国际太阳能光伏网

2020
10/27
09:20
文章二维码

手机扫码看资讯

关键词: 太阳能电池 太阳能电材料 光伏材料

近年来,受益于非富勒烯受体材料分子的设计与应用,有机太阳能电池的能量转换效率已经超过了17%。从发表论文数据来看,超过百分之六十的研究论文主要致力于建立新的分子结构与其光伏特性之间的关系。然而,这种传统研究方法包括对化学合成、供体/受体材料匹配和器件制备进行精细控制及优化,需要大量的资源投入和较长的研究周期。因此有机光伏材料的开发速度一直较慢,限制了有机光伏产业的实际商业应用。

近日,武汉大学闵杰研究员课题组在开发高性能有机太阳能电池光伏体系的研究过程中,利用机器学习在合成新材料之前建立化学结构、供体/受体匹配体系和光伏特性之间的关系,并对新材料结构以及供体/受体材料配对进行效率预测,建立了分子结构、供体/受体对与性能之间关系的多种可预测模型,可对供体、受体材料以及活性层供体/受体对进行快速的评估和筛选,并据此评估并确定了最优算法模型来指导设计高性能的有机光伏材料体系。他们的研究首先建立了一个包括已被文献报道过的565组基于非富勒烯小分子受体材料和聚合物供体材料的供体/受体对数据库,采用ASCII码字符串的表达方式将供体/受体材料的化学结构进行转化成二进制机器语言,并与其相关光伏参数一起作为训练集和验证集,分别采用线性回归(LR)、多类逻辑回归(MLR)、提升回归树(BRT)、人工神经网络(ANN)和随机森林(RF)算法构建机器学习模型,进一步建立“结构-供体/受体对-性能”关系,从而实现活性层供体/受体光伏材料的快速筛选,并预测基于机器学习开发的新供体/受体对的光伏性能。

研究人员对五种典型的算法模型进行评估,对其预测结果进一步进行实验验证,从中评选出了适用于光伏材料供体/受体对的性能预测最优算法模型。他们发现,基于RF和BRT模型的预测结果与测试集中真实值的皮尔森相关系数(r)均超过了0.7,说明这两种模型是进行这类机器学习的最佳表达方式。进一步,他们通过原有数据集并结合RF和BRT模型,分别筛选和计算出了3200万个供体/受体对。为了验证上述模型是否能够准备地指导设计新的有机光伏体系,研究人员从该数据库中选出六组易于合成且具有高效率的供体/受体对,并进行了材料合成、制备与表征。研究结果表明,相较于BRT,RF机器学习模型预测的结果和实验结果之间具有良好的一致性,从而验证了RF模型的高通量虚拟筛选与预测能力,体现了机器学习方法的可靠性。

总而言之,相较于传统上通过大量实验来研发新材料以及试错的办法来筛选供体/受体对,通过机器学习模型,尤其是RF模型,可以快速、高通量地筛选有机光伏体系,将大大加快高性能有机光伏材料及其供体/受体对的探索过程,同时该工作也证明了机器学习方法在解决有机光伏材料问题方面强大的能力。

返回 国际太阳能光伏网 首页

光伏资讯一手掌握,关注国际能源网 " 光伏头条 " 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发文章

扫码关注

0条 [查看全部]   相关评论

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网
×

购买阅读券

×

20张阅读券

20条信息永久阅读权限

19.9

  • ¥40.0
  • 60张阅读券

    60条信息永久阅读权限

    49.9

  • ¥120.0
  • 150张阅读券

    150条信息永久阅读权限

    99.9

  • ¥300.0
  • 350张阅读券

    350条信息永久阅读权限

    199.9

  • ¥700.0
  • 请输入手机号:
  • 注:请仔细核对手机号以便购买成功!

    应付金额:¥19.9

  • 使用微信扫码支付
  • 同意并接受 个人订阅服务协议

    退款类型:

      01.支付成功截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      02.付款后文章内容截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      03.商户单号 *

      04.问题描述