当前位置: 光伏网 » 电站零部件 » 正文

斯坦福启动DeepSolar AI地图项目 希望统计全美屋顶太阳能面板数据

日期:2018-12-21    来源:百家号

国际太阳能光伏网

2018
12/21
11:15
文章二维码

手机扫码看资讯

关键词: 太阳能发电厂 太阳能电池板 太阳能行业 电站零部件

  太阳能行业在美国稳步增长,行业营收从2007年的4200万美元激增至2017年的2.1亿美元,而未来五年的总产能预计将增长一倍以上。虽然这些数据可以评估太阳能吸收率的有用总体情况,但是更精细的细节中一定可以学到更多东西。斯坦福大学的科学家们专门为这项工作建立了一个新的AI机器学习工具,它名为DeepSolar。
 
  了解太阳能电池板的位置以及人们安装它们的动机可能对能源管理工作具有无法估量的价值。它可以帮助公用事业公司更好地平衡供需,从而提供更可靠的电力。它还可以帮助我们了解是什么激励了人们安装屋顶太阳能面板,这也许可以帮助城市的管理者和建设者们更好地设计规划城市。
 
  目前,研究人员只能粗略估计太阳能面板的安装情况,但随着卫星图像的不断改进,新的可能性也随之出现。斯坦福大学的科学家训练了一种机器学习算法,通过为大约370000张图像做统计来处理这项重大任务,每张图像都包含大约100英尺x100英尺(30 x 30米)的地球区域,其中分别标明它们是否含有太阳能板。
 
  通过分析这些图像,DeepSolar程序确定了可以与太阳能电池板可靠关联的特征类型,例如颜色,纹理和尺寸。随着时间的推移,DeepSolar在这方面做得相当不错,并且能够在93%的图片中准确定位太阳能电池板的识别图像,尽管它错过了大约十分之一不到的图像。
 
  “我们实际上并没有告诉机器哪个视觉特征很重要,”斯坦福大学电气工程博士候选人俞凡凡(音译)说,他与土木和环境工程博士候选人王哲成(音译)建立了这个系统。 “所有这些都需要通过机器学习。”
 
  然后,该团队将DeepSolar用于分析十亿个卫星图像,以寻找美国太阳能装置,仅用了一个月。他们在住宅物业,商业屋顶和大型太阳能发电厂发现的太阳能电池板总共有147万套,这个数字远远超过目前的估计。这与美国人口普查和其他数据相结合,就可以得出关于太阳能采用背后的激励因素的结论。
 
  例如,该团队发现,中低收入家庭通常不会安装太阳能,即使在阳光充足且时间有利可图的地区,他们怀疑是由于前期成本过高所致。另一个有趣的方式方法来自于地理数据的整合,使团队能够确定触发特定区域采购太阳能面板所需的阳光照射阈值。
 
  “我们发表了一些见解,但这只是我们认为可以给其他研究人员,公用事业,太阳能产品开发商和政策制定者可以进一步发现的冰山一角,”主管Arun Majumdar说。 “我们正陆续公开这些数据,以便其他人找到太阳能部署模式,并建立经济和行为模型。”
 
  所有DeepSolar数据都可在该项目的网站上公开获取,而该研究已发表在Joule期刊上。
 
返回 国际太阳能光伏网 首页

光伏资讯一手掌握,关注国际能源网 " 光伏头条 " 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发文章

扫码关注

0条 [查看全部]   相关评论

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网
×

购买阅读券

×

20张阅读券

20条信息永久阅读权限

19.9

  • ¥40.0
  • 60张阅读券

    60条信息永久阅读权限

    49.9

  • ¥120.0
  • 150张阅读券

    150条信息永久阅读权限

    99.9

  • ¥300.0
  • 350张阅读券

    350条信息永久阅读权限

    199.9

  • ¥700.0
  • 请输入手机号:
  • 注:请仔细核对手机号以便购买成功!

    应付金额:¥19.9

  • 使用微信扫码支付
  • 同意并接受 个人订阅服务协议

    退款类型:

      01.支付成功截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      02.付款后文章内容截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      03.商户单号 *

      04.问题描述